Statistics (tit.stats)¶
Statistical analysis utilities for TI-Toolbox.
This package includes permutation testing, atlas-based posthoc analyses, and reporting/visualization helpers.
atlas_overlap_analysis ¶
atlas_overlap_analysis(sig_mask, atlas_files, data_dir, reference_img=None, verbose=True)
Analyze overlap between significant voxels and atlas regions
Parameters:
sig_mask : ndarray (x, y, z) Binary mask of significant voxels atlas_files : list of str List of atlas file names data_dir : str Directory containing atlas files reference_img : nibabel image, optional Reference image for resampling verbose : bool Print progress information
Returns:
results : dict Dictionary mapping atlas names to DataFrames of region overlap statistics
Source code in tit/stats/atlas_utils.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | |
cluster_analysis ¶
cluster_analysis(sig_mask, affine, verbose=True)
Perform cluster analysis on significant voxels
Parameters:
sig_mask : ndarray (x, y, z) Binary mask of significant voxels affine : ndarray Affine transformation matrix verbose : bool Print progress information
Returns:
clusters : list of dict Cluster information including size, center of mass in voxel and MNI coordinates
Source code in tit/stats/stats_utils.py
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 | |
cluster_based_correction ¶
cluster_based_correction(responders, non_responders, p_values, valid_mask, cluster_threshold=0.01, n_permutations=500, alpha=0.05, test_type='unpaired', alternative='two-sided', cluster_stat='size', t_statistics=None, n_jobs=-1, verbose=True, logger=None, save_permutation_log=False, permutation_log_file=None, subject_ids_resp=None, subject_ids_non_resp=None)
Apply cluster-based permutation correction for multiple comparisons
This implements the cluster-based approach commonly used in neuroimaging. Tests all valid voxels in permutations and uses parallel processing for speed.
Parameters:
responders : ndarray (x, y, z, n_subjects) Responder data non_responders : ndarray (x, y, z, n_subjects) Non-responder data p_values : ndarray (x, y, z) Uncorrected p-values from initial test valid_mask : ndarray (x, y, z) Boolean mask of valid voxels cluster_threshold : float Initial p-value threshold for cluster formation (uncorrected) n_permutations : int Number of permutations for null distribution (500-1000 recommended) alpha : float Significance level for cluster-level correction test_type : str Either 'paired' or 'unpaired' t-test for permutations alternative : {'two-sided', 'greater', 'less'}, optional Alternative hypothesis (default: 'two-sided') cluster_stat : {'size', 'mass'}, optional Cluster statistic to use (default: 'size'): * 'size': count of contiguous significant voxels * 'mass': sum of t-statistics in contiguous significant voxels t_statistics : ndarray (x, y, z), optional T-statistics from initial test (required if cluster_stat='mass') n_jobs : int Number of parallel jobs. -1 uses all available CPU cores. 1 disables parallelization. verbose : bool Print progress information logger : logging.Logger, optional Logger instance for output (default: None) save_permutation_log : bool, optional If True, save detailed permutation information to file (default: False) permutation_log_file : str, optional Path to save permutation log. If None and save_permutation_log=True, will use default name subject_ids_resp : list, optional List of responder subject IDs (for logging) subject_ids_non_resp : list, optional List of non-responder subject IDs (for logging)
Returns:
sig_mask : ndarray (x, y, z) Binary mask of significant voxels cluster_stat_threshold : float Cluster statistic threshold from permutation distribution sig_clusters : list of dict Information about significant clusters null_max_cluster_stats : ndarray Maximum cluster statistics from permutation null distribution cluster_stats : list of dict All clusters from observed data (for plotting) correlation_data : dict Dictionary with 'sizes' and 'masses' arrays for correlation analysis
Source code in tit/stats/stats_utils.py
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 | |
correlation_cluster_correction ¶
correlation_cluster_correction(subject_data, effect_sizes, r_values, t_statistics, p_values, valid_mask, weights=None, correlation_type='pearson', cluster_threshold=0.05, n_permutations=1000, alpha=0.05, cluster_stat='mass', alternative='two-sided', n_jobs=-1, verbose=True, logger=None, save_permutation_log=False, permutation_log_file=None, subject_ids=None)
Apply cluster-based permutation correction for correlation analysis.
This implements the ACES approach where effect sizes are shuffled to break the association between E-field magnitude and outcome.
Parameters:
subject_data : ndarray (x, y, z, n_subjects) Electric field magnitude data effect_sizes : ndarray (n_subjects,) Continuous outcome measure r_values : ndarray (x, y, z) Correlation coefficients from initial test t_statistics : ndarray (x, y, z) T-statistics from initial test p_values : ndarray (x, y, z) P-values from initial test valid_mask : ndarray (x, y, z) Boolean mask of valid voxels weights : ndarray (n_subjects,), optional Subject weights for weighted correlation correlation_type : str 'pearson' or 'spearman' cluster_threshold : float P-value threshold for cluster formation n_permutations : int Number of permutations alpha : float Significance level for cluster-level correction cluster_stat : str 'size' or 'mass' (sum of t-values in cluster) alternative : {'two-sided', 'greater', 'less'}, optional Defines the alternative hypothesis (default: 'two-sided'): * 'two-sided': test both positive and negative correlations * 'greater': test positive correlations only (one-tailed, uses full alpha) * 'less': test negative correlations only (one-tailed, uses full alpha) n_jobs : int Number of parallel jobs (-1 = all cores) verbose : bool Print progress information logger : logging.Logger, optional Logger instance save_permutation_log : bool Save permutation details permutation_log_file : str, optional Path for permutation log subject_ids : list, optional Subject IDs for logging
Returns:
sig_mask : ndarray (x, y, z) Binary mask of significant voxels cluster_stat_threshold : float Cluster statistic threshold from null distribution sig_clusters : list of dict Information about significant clusters null_distribution : ndarray Maximum cluster statistics from permutations all_clusters : list All observed clusters correlation_data : dict Cluster size and mass data for analysis
Source code in tit/stats/stats_utils.py
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 | |
correlation_voxelwise ¶
correlation_voxelwise(subject_data, effect_sizes, weights=None, correlation_type='pearson', verbose=True)
Perform vectorized correlation at each voxel between electric field magnitude and continuous outcome measure.
This implements the ACES (Automated Correlation of Electric field strength and Stimulation effect) approach for continuous outcomes.
Parameters:
subject_data : ndarray (x, y, z, n_subjects) Electric field magnitude data for all subjects effect_sizes : ndarray (n_subjects,) Continuous outcome measure for each subject (e.g., effect size, % improvement, behavioral score) weights : ndarray (n_subjects,), optional Weights for each subject (e.g., sample size for meta-analysis) correlation_type : {'pearson', 'spearman'}, optional Type of correlation (default: 'pearson') verbose : bool Print progress information
Returns:
r_values : ndarray (x, y, z) Correlation coefficient at each voxel t_statistics : ndarray (x, y, z) Studentized correlation (t-statistic) at each voxel p_values : ndarray (x, y, z) P-value at each voxel valid_mask : ndarray (x, y, z) Boolean mask of valid voxels
Source code in tit/stats/stats_utils.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | |
generate_correlation_summary ¶
generate_correlation_summary(subject_data, effect_sizes, r_values, sig_mask, cluster_threshold, clusters, atlas_results, output_file, params=None, effect_metric='Effect Size', subject_ids=None, weights=None)
Generate comprehensive summary report for correlation analysis
Parameters:
subject_data : ndarray (x, y, z, n_subjects) Electric field magnitude data effect_sizes : ndarray (n_subjects,) Continuous outcome measures r_values : ndarray (x, y, z) Correlation map sig_mask : ndarray (x, y, z) Binary mask of significant voxels cluster_threshold : float Cluster statistic threshold from permutation clusters : list List of cluster dictionaries atlas_results : dict Atlas overlap results output_file : str Path to output summary file params : dict, optional Analysis parameters effect_metric : str Name of the outcome measure subject_ids : list, optional List of subject IDs weights : ndarray, optional Subject weights (if used)
Source code in tit/stats/reporting.py
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | |
generate_summary ¶
generate_summary(responders, non_responders, sig_mask, correction_threshold, clusters, atlas_results, output_file, correction_method='cluster', params=None, group1_name='Responders', group2_name='Non-Responders', value_metric='Current Intensity', test_type='unpaired', observed_cluster_sizes=None)
Generate comprehensive summary report
Parameters:
responders : ndarray Responder data (group 1) non_responders : ndarray Non-responder data (group 2) sig_mask : ndarray Binary mask of significant voxels correction_threshold : float Threshold used for multiple comparison correction clusters : list List of cluster dictionaries atlas_results : dict Atlas overlap results output_file : str Path to output summary file correction_method : str Method used: 'cluster' or 'fdr' params : dict, optional Dictionary of analysis parameters (cluster_threshold, n_permutations, alpha, etc.) If None, uses defaults group1_name : str Name for first group (default: "Responders") group2_name : str Name for second group (default: "Non-Responders") value_metric : str Name of the metric being compared (default: "Current Intensity") test_type : str Type of t-test used: 'paired' or 'unpaired' (default: "unpaired") observed_cluster_sizes : list, optional List of observed cluster sizes (before permutation correction) sorted largest to smallest
Source code in tit/stats/reporting.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | |
get_path_manager ¶
get_path_manager() -> PathManager
Get the global PathManager singleton instance.
Returns: The global path manager instance
Source code in tit/core/paths.py
680 681 682 683 684 685 686 687 688 689 690 | |
load_subject_data ¶
load_subject_data(subject_configs, nifti_file_pattern=None, analysis_type='group_comparison')
Unified data loading for both group comparison and correlation analysis
Parameters:
subject_configs : list of dict Subject configurations (format depends on analysis_type) nifti_file_pattern : str, optional Pattern for NIfTI files analysis_type : str Either 'group_comparison' or 'correlation'
Returns:
For group_comparison: responders, non_responders, template_img, resp_ids, non_resp_ids For correlation: subject_data, effect_sizes, weights, template_img, subject_ids
Source code in tit/stats/permutation_analysis.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | |
load_subject_data_correlation ¶
load_subject_data_correlation(subject_configs, nifti_file_pattern=None)
Load subject data for correlation analysis (continuous outcomes)
Source code in tit/stats/permutation_analysis.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | |
load_subject_data_group_comparison ¶
load_subject_data_group_comparison(subject_configs, nifti_file_pattern=None)
Load subject data for group comparison analysis (binary outcomes)
Source code in tit/stats/permutation_analysis.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | |
main ¶
main()
Command-line interface for unified permutation analysis
Source code in tit/stats/permutation_analysis.py
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 | |
plot_cluster_size_mass_correlation ¶
plot_cluster_size_mass_correlation(cluster_sizes: np.ndarray, cluster_masses: np.ndarray, output_file: str, *, dpi: int = 300) -> str | None
Plot correlation between cluster size and cluster mass from permutation null distribution.
Source code in tit/plotting/stats.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | |
plot_permutation_null_distribution ¶
plot_permutation_null_distribution(null_distribution: np.ndarray, threshold: float, observed_clusters: Sequence[Mapping[str, float]], output_file: str, *, alpha: float = 0.05, cluster_stat: str = 'size', dpi: int = 300) -> str
Plot permutation null distribution with threshold and observed clusters.
Source code in tit/plotting/stats.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | |
prepare_config_from_csv ¶
prepare_config_from_csv(csv_file, analysis_type='group_comparison')
Load subject configurations from CSV file
Parameters:
csv_file : str Path to CSV file analysis_type : str Either 'group_comparison' or 'correlation'
Returns:
list of dict : Subject configurations
Source code in tit/stats/permutation_analysis.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | |
run_analysis ¶
run_analysis(subject_configs, analysis_name, config=None, output_callback=None, callback_handler=None, progress_callback=None, stop_callback=None)
Run unified cluster-based permutation analysis
Parameters:
subject_configs : list of dict or str Either a list of subject configurations or path to CSV file analysis_name : str Name for this analysis (used for output directory) config : dict, optional Configuration dictionary (merged with defaults based on analysis_type) output_callback : callable, optional Callback function for status updates (for GUI integration) callback_handler : logging.Handler, optional Callback handler for GUI console integration progress_callback : callable, optional Callback function for progress updates stop_callback : callable, optional Callback function to check if analysis should be stopped
Returns:
dict : Results dictionary (structure depends on analysis_type)
Source code in tit/stats/permutation_analysis.py
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | |
setup_logging ¶
setup_logging(output_dir, analysis_type='group_comparison', callback_handler=None)
Set up logging for unified analysis
Parameters:
output_dir : str Directory where log file will be saved analysis_type : str Type of analysis for log naming callback_handler : logging.Handler, optional Callback handler for GUI integration
Returns:
logger : logging.Logger Configured logger instance log_file : str Path to log file
Source code in tit/stats/permutation_analysis.py
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | |
ttest_voxelwise ¶
ttest_voxelwise(responders, non_responders, test_type='unpaired', alternative='two-sided', verbose=True)
Perform vectorized t-test (paired or unpaired) at each voxel.
Uses vectorized computation for optimal performance.
Parameters:
responders : ndarray (x, y, z, n_subjects) Responder data (group 1) non_responders : ndarray (x, y, z, n_subjects) Non-responder data (group 2) test_type : str Either 'paired' or 'unpaired' t-test alternative : {'two-sided', 'greater', 'less'}, optional Defines the alternative hypothesis (default: 'two-sided'): * 'two-sided': means are different (responders ≠ non-responders) * 'greater': responders have higher values (responders > non-responders) * 'less': responders have lower values (responders < non-responders) verbose : bool Print progress information
Returns:
p_values : ndarray (x, y, z) P-value at each voxel t_statistics : ndarray (x, y, z) T-statistic at each voxel valid_mask : ndarray (x, y, z) Boolean mask of valid voxels
Source code in tit/stats/stats_utils.py
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 | |
Permutation analysis (tit.stats.permutation_analysis)¶
Unified Cluster-Based Permutation Testing for TI-Toolbox
This script provides unified cluster-based permutation testing for both: 1. Group comparison analysis (binary responder/non-responder classification) 2. Correlation analysis (continuous outcome measures)
Supports both t-test and correlation-based statistical approaches with cluster-based permutation correction for multiple comparisons.
Usage: from tit.stats import permutation_analysis # Group comparison results = permutation_analysis.run_analysis( subject_configs, analysis_name, analysis_type='group_comparison' ) # Correlation analysis results = permutation_analysis.run_analysis( subject_configs, analysis_name, analysis_type='correlation' )
For GUI usage, see gui/extensions/permutation_analysis.py
load_subject_data ¶
load_subject_data(subject_configs, nifti_file_pattern=None, analysis_type='group_comparison')
Unified data loading for both group comparison and correlation analysis
Parameters:
subject_configs : list of dict Subject configurations (format depends on analysis_type) nifti_file_pattern : str, optional Pattern for NIfTI files analysis_type : str Either 'group_comparison' or 'correlation'
Returns:
For group_comparison: responders, non_responders, template_img, resp_ids, non_resp_ids For correlation: subject_data, effect_sizes, weights, template_img, subject_ids
Source code in tit/stats/permutation_analysis.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | |
load_subject_data_correlation ¶
load_subject_data_correlation(subject_configs, nifti_file_pattern=None)
Load subject data for correlation analysis (continuous outcomes)
Source code in tit/stats/permutation_analysis.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | |
load_subject_data_group_comparison ¶
load_subject_data_group_comparison(subject_configs, nifti_file_pattern=None)
Load subject data for group comparison analysis (binary outcomes)
Source code in tit/stats/permutation_analysis.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | |
main ¶
main()
Command-line interface for unified permutation analysis
Source code in tit/stats/permutation_analysis.py
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 | |
prepare_config_from_csv ¶
prepare_config_from_csv(csv_file, analysis_type='group_comparison')
Load subject configurations from CSV file
Parameters:
csv_file : str Path to CSV file analysis_type : str Either 'group_comparison' or 'correlation'
Returns:
list of dict : Subject configurations
Source code in tit/stats/permutation_analysis.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | |
run_analysis ¶
run_analysis(subject_configs, analysis_name, config=None, output_callback=None, callback_handler=None, progress_callback=None, stop_callback=None)
Run unified cluster-based permutation analysis
Parameters:
subject_configs : list of dict or str Either a list of subject configurations or path to CSV file analysis_name : str Name for this analysis (used for output directory) config : dict, optional Configuration dictionary (merged with defaults based on analysis_type) output_callback : callable, optional Callback function for status updates (for GUI integration) callback_handler : logging.Handler, optional Callback handler for GUI console integration progress_callback : callable, optional Callback function for progress updates stop_callback : callable, optional Callback function to check if analysis should be stopped
Returns:
dict : Results dictionary (structure depends on analysis_type)
Source code in tit/stats/permutation_analysis.py
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 | |
setup_logging ¶
setup_logging(output_dir, analysis_type='group_comparison', callback_handler=None)
Set up logging for unified analysis
Parameters:
output_dir : str Directory where log file will be saved analysis_type : str Type of analysis for log naming callback_handler : logging.Handler, optional Callback handler for GUI integration
Returns:
logger : logging.Logger Configured logger instance log_file : str Path to log file
Source code in tit/stats/permutation_analysis.py
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | |